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General objective of the project 
To study the plasma transport by means of coupling kinetic equations for the plasma particles 
with stochastic differential equations for the electric and magnetic fields. 
 
Obiective for step IV: 
Obiectiv principal: 
Coupling dynamics at different time scales and inclusion of non-Gaussian processes 
 
Milestones: 
1. Description of the stochastic transitions between two plasma states and coupling between 
dynamics at different time scales by introducing of a non-stationary stochastic process. (Lect. 
Dr. Pometescu Nicolae, Assistant research Dr. Babalic Mirela) 
2. Modelling of the self organized criticality processes in fusion plasmas. Long range 
correlation effects. (Prof. Dr. Steinbrecher Gyorgy) 
3. Clarify some aspects of the anomalous magnetic transport in tokamaks using deterministic 
models and describe the influence of the stochastic (chaotic) dynamics on the transport 
properties. (Conf. Dr. Constantinescu Dana) 
4. Observe the influence of a stochastic perturbation in deterministic models that exhibit Hopf 
bifurcation. (Conf. Dr. Constantinescu Dana) 
5. Application of the decorrelation trajectory method to the turbulent transport. (Lect. Dr. 
Negrea Marian, Lect. Dr. Petrisor Iulian) 
 
 
Actions in step IV: 
 
Mobility action was accomplished by Lect. Dr. Nicolae Pometescu at Universite Libre de 
Bruxelles in the period 19-24 July 2010. In this mobility period was studied the suggestion of 
Dr Nicolae Pometescu to use a non-stationary stochastic process in order to introduce multi-
time different scales to model the transport process in plasma by solving the differential 
stochastic equation of V-Langevin kind. 



Conf. Dr Dana Constantinescu accomplished a mobility action at Universite Libre de 
Bruxelles in the period 29 October – 3 November 2010. In this period were analysed 
opportunities to study transport in plasma by using fractional methods.  
From Belgium, Dr Boris Weyssow visited University of Craiova in the period 3-9 November 
2010 where he discussed with Dr Pometescu Nicolae and Dr Mirela Babalic on the model of 
particle transport in plasma using non-stationary stochastic process. Also he worked with Dr 
Negrea Marian and Dr Petrisor Iulian on the numerical simulation for the study of the 
transport in MHD plasma in test-particle approximation. 
Dr Weyssow Boris and Dr Constantinescu Dana worked on the influence of stochastic 
perturbation on systems that exhibit Hopf bifurcation. 
   
The web site of the project:   http://cis01.central.ucv.ro/proiectecercetare/valonia/    was 
update. 
 
Scientific description
 
The turbulence plays an important role in plasma deconfining and transfer of the energy 
between particles and instabilities.  
The experimental studies of the fusion plasma show that particles exhibit a non-diffusive 
behaviour (anomalous transport). This kind of transport can be studied in terms of stochastic 
differential equations (as Langevin equations) or in terms of Self Organized Criticality 
models. 
The evaluation of running diffusion coefficients is an important goal in fusion plasma physics 
as it provides a first insight into the transport properties of charged particles in electro-
magnetic fields. The set of stochastic velocity equations, the so-called V-Langevin equations, 
were used by many authors to describe a trace particle transport in fluctuating magnetic field. 
In fusion plasma this model can be applied to some physical situation in which the plasma 
oscillate between two temperatures in rather stochastic manner. One example can be found in 
a study of the impact of large ELMs on JET for unfueled 3.0 MA H-mode discharge. 
Other example we met in pellet fuelling of Ohmic and Lower Hybrid driven discharges in 
Tore Supra. The experimental results show for electrons in the central region a transition 
between two temperatures, almost regular in the Ohmic case, and almost random in the Lower 
Hybrid case, on the scale of a few seconds. 
Transport of charged particles in guiding centre approximation is described in terms of 
Langevin stochastic differential equations where the stochastic additive term is stationary 
[1,2] or non-stationary [3].  
It was already shown that different tools to model some aspects of transport (deterministic, 
stochastic, fractional) are linked between them, in that they can be derived from the same 
conservation law in integral form: this unifies the description of transport in a strong 
background field (Vlasov equation), with collisions (Fokker-Plank equation) and under the 
interaction with intermittent, turbulent electric fields (fractional transport equation in velocity 
space). For this reason it is important to study mixed models (for example stochastic 



differential equations or fractional differential equations) in order to obtain a realistic 
description of transport phenomena. 
 
 

1. Description of the stochastic transitions between two plasma states and coupling 
between dynamics at different time scales by introducing of a non-stationary stochastic 
process. (Lect. Dr. Pometescu Nicolae, Asistent cercetare Dr. Babalic Mirela) 
 
Using Langevin equations we perform an analysis of the transport of the guiding centers of 
charge particles along and perpendicularly to the main magnetic field. The model includes 
collisions and therefore a thermal velocity which we relate to the plasma temperature 
evolution through a stochastic process, and a magnetic field represented by a different 
stochastic process which is considered independent of the thermal velocity. 
 
1.1.  The V-Langevin equations 
The general form of the V-Langevin equations have been derived previously in 
the form  
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where )(tVz  is the stochastic parallel velocity, [ ] BBzxb /,
rrr

=⊥  is the unit vector along the 

equilibrium magnetic field, β  is the amplitud of the magnetic fluctuations, zυ  is the collision 

frequency and zα  is the stochastic acceleration in parallel direction. 

When zα  is a white noise process we obtained 
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In our previous study [1, 2] acceleration zα  was defined as a coloured noise process,   
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where the stochastic process ( )tη  , with one of the values a or b, is defined as a stationary 
stochastic process with master equations 
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In the present study the stochastic process ( )tη  is non-stationary and defined by master 
equations  
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As in the stationary case 

0

1
τ

μλ =+  

where 0τ  is the time correlation. Also we have   
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In this case we obtain the conditional probabilities 
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The asymptotic behaviour, when ∞→t , is given as  
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The mean value read as  
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with the asymptotic oscillate value  
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The second order correlation is obtained as 
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The asymptotic behaviour is  
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For the stochastic process  zα  , the mean value is zero 

,0)( >=< tzα  
and the second order correlation in asymptotic limit is  
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1.2 Magnetic field model 
 
The magnetic field is assumed to be fluctuating according to a stochastic law defined by: 
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The parameter 1<<β  is a dimensionless number measuring the characteristic amplitude of 
the fluctuations, relative to the equilibrium magnetic field. The 
quantities )(,)( zbzb yx  are dimensionless and have an arbitrary variation on space and time 

(in general case). Here we consider magnetic fluctuation time-independent (frozen turbulence) 
with gyrotropic symmetry (cylindrical symmetry).  
 The stochastic process for the components )(,)( zbzb yx  is described by the second 

order correlations,  
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Using the Fourier representation of the magnetic field we obtain, 
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1.3 Second order correlation of the parallel velocity  
 
The second order correlation read as  

  
with the asymptotic behaviour  

 
In the particular case  zνω 2=   we obtain 
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Conclusions 
The second order correlation of the parallel velocity has in the asymptotic limit an oscillate 
variation with an amplitude attenuate by an exponential factor. 
The explicit form of the oscillation depends on the relation between the two frequencies: the 
collision frequency and the external frequency which break the correlation. 
The leading results of this study were presented at the conference [3], Physics Conference 
TIM-10, Timisoara, 25 - 27 November 2010, TCP-O11. 
 

 



2. Modelling of the self organized criticality processes in fusion plasmas. Long 
range correlation effects (Prof. Dr. Steinbrecher Gyorgy) 

 
2.1.  Generalized linear analytic model of instability growth 

 
Continuous time, one-dimensional affine stochastic evolution equations were studied both in 
physical and mathematical literature ([4-9]). This interest in ASEE comes partly from the 
occurrence of heavy tail (HT) in the stationary probability distribution functions (PDF), in the 
models including the self-organized criticality models of the fusion or space plasma 
turbulence [4]. Despite their apparent formal simplicity, even in the classical examples of the 
discrete time ASEE, the affine iterated function systems, the stationary cumulative probability 
function in one or two-dimensional case has complicated fractal structure and is currently 
used for image compression. 

The apparently simple continuous time, one-dimensional ASEE from Ref. [4] captures 
important qualitative features of the very complex dynamics controlled fusion devices. It 
explains the simultaneous occurrence of the very small value of the heavy tail exponent and 
the large correlation time, approximate self-similarity, of the driving multiplicative noise. An 
important conclusion from [4] is that even a small amplitude driving noise, but having large 
correlation time, produces a highly delocalized stationary PDF, with small HT exponent.   

This phenomenon is a typical stochastic effect; it is an intermediate effect between 
negative and positive Liapunov exponents in the systems without noise.   
The ASEE model equation that is considered here is a class of one-dimensional random 
differential equation, which extends previous results from ref [4], by using new topological 
vector space methods. The additive and the multiplicative random terms in our model are 
stationary processes. The multiplicative term is a generalization of the stationary Gaussian 
processes, having very general correlation function. Our results and those from Ref. [7, 8] are 
complementary. 
Our approach is also focused on the generalization of the previous model [4], by including 
more general driving noises and some restricted class of nonlinear term. 
 
We studied the general one-dimensional quasi-linear equation 
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decaying correlation function. The non linear term is a stochastic process, ))(;( tt ωω XB  

having finite moments of sufficiently large order. For large amplitudes of X(t) the term 
))(;( tt ωω XB  is supposed to remain finite.  

 
    The following results were obtained 



a. Under very general conditions we proved that there exists a stationary probability 
distribution function. The convergence to the stationary distribution function is 
described by a class of weak topologies in the space of probability measures that 
characterises the distribution of the amplitude X(t). These topologies are defined by 
suitable Lebesgue spaces with non standard exponent:  the convergence is expressed 

in the term of pL   spaces that are allowed to have non-standard values for the 
exponent p i.e. 0<p<1.  

b. The heavy tail exponent of the stationary probability distribution function was 
explicitly computed. We proved that it is completely determined by the statistical 
properties of the leading linear term.  

c. The convergence results obtained extend largely previous results on one- dimensional 
linear stochastic equations from Refs. [4-9]. The use of the non-compact version of the 
Kakutani –Stone theorem concerning the density of a lattice of generalized Holder 
continuous functions on a local compact metric space give a sound framework to the 
study of anomalous transport phenomena in turbulent plasma. 

 
2.2. Numerical modelling of self-organized criticality models of the fusion and space 
plasma turbulence 
 

For the numerical simulation of the effects of the long-range correlations in the edge 
plasma turbulence, an algorithm for generating superdiffusive fractional Brownian motion 
(fBm) was elaborated [11]. The algorithm uses a new class of representation, presented also in 
Ref. [4], obtained from a self-similar ensemble of Ornstein-Uhlenbeck processes and allows a 
straightforward implementation on parallel computers.   

The typical trajectories of fBm are continuous but are nowhere differentiable, and give 
a rich class of examples of functions that are non-monotone, even restricted to arbitrary small 
domain. Nevertheless fBm is considered one of the must successful stochastic models for 
natural and economical processes 

The special place of fBm in mathematical physics is related to the fact that it is 
uniquely defined (modulo three parameters) by simple axiom [12] and its occurrence in the 
study of the fusion plasmas is explained by functional central limit theorems [12] 
The fBm is a straightforward, logical, generalization of the classical Brownian motion.  As a 
consequence of the previous simple axiom, it is expected that according to the central limit 
theorem, fBm appears as a realistic model for self-similar stationary processes having non-
trivial correlations of the increments.  

In physical applications the persistent fBm related to the impurity transport in random 
electromagnetic field, the persistent fBm appears as a scaling limit of more complicated 
stationary transport processes as proved in refs [13-14].  

The persistent fBm appears also as a hidden noise that triggers the instabilities in self 
organized criticality models [4, 11]. This aspect is related to the first exit time statistics 



problem, where unfortunately there are few analytic results and numerical methods must be 
used. This was one the main motivation of this study.  

It was proved in a rigorous style the conjecture exposed in ref. [4]: the persistent fBm 
can be approximated in suitable Hilbert space metric by a linear combination of self-similar 
ensemble of integrated Ornstein-Uhlenbeck processes. Rigorous and efficient control of the 
approximation errors was elaborated. The algorithm allows including correction due to the 
cut-of of the integrated Ornstein-Uhlenbeck processes with very short correlation times. Was 
elaborated also an optimised correction of the errors resulting by the truncation of the 
components with short correlation times. 

The generation method is easy to adapt to parallel computers. Contrary to the standard 
generation method that uses fast Fourier transform, this method can be used to the study of 
noise driven processes in very large time scales, that are not known at the start of the 
simulations.   

These results will be used in the acceleration to the existing numerical methods in the 
integrated tokamak modelling 
 

3. Integrability versus chaos in non-autonomous Hamiltonian systems. 
Applications to the study of some transport phenomena (Conf. Dr. Constantinescu 
Dana) 
 
The phase space of some Hamiltonian systems is a complex mixture of invariant zones 

whose points have regular, respectively chaotic dynamics. The regular zones (where the 
system is almost integrable) are characterized by a reduced transport. Such zones act 
sometimes as transport barriers which separate different chaotic zones. Inside the chaotic zone 
the transport is increased, due to the mixing properties of the system.  

We proposed general results concerning the existence and the localization of internal 
transport barriers for Hamiltonian systems with periodical perturbation in 1 ½ degrees of 
freedom. We systematically studied the influence of the parameters which define the 
unperturbed Hamiltonian on the transport properties.  

The results were applied for the study of the magnetic transport in tokamaks where the 
equations of the magnetic field lines can be written in a Hamiltonian form: 
- It was proved that a transport barrier exists in the low shear region for enough small 
perturbations of the ideal system; it was shown the reversed-shear is not a mandatory 
condition for the existence of the transport barrier. 
- It was proved that the transport barrier intersects the so called “regular curve” which can be 
analytically derived from the model. It was shown that the regular curve and the shearless 
curve (which can be only numerically derived) are closed, so the result we obtained can be 
directly applied for locating the transport barriers. It was shown that the transport barrier does 
not exist if all the points of the regular curve have chaotic (stochastic) behaviour. This result 
gives a criterion for obtaining a globally stochastic behaviour of the system which drastically 
modifies the transport properties. 
 



4. The influence of stochastic perturbation on systems that exhibits Hopf bifurcation 
(Conf. Dr. Constantinescu Dana) 
 
A deterministic three-dimensional system of differential equations which exhibits Hopf 

bifurcation was studied.  The obtained results are interesting for fusion plasma physics 
because the system models the global changes of the plasma parameters during a discharge in 
tokamak (typical changes in profiles or profile gradients) in the presence local instabilities. In 
the system two different time scales of underlying dynamics were considered and some 
oscillations of saw-tooth type were pointed out.  

The existence of a stable limit cycle (due to the Hopf bifurcation) significantly influences 
the dynamics of the system, inducing a regular oscillating behavior associated with 
periodicity.  

The study of the corresponding stochastic system obtained by the perturbation of the 
bifurcation parameter by a Gaussian white noise started. From the numerical simulations it 
was observed that, from the point of view of random dynamical systems, the deterministic 
Hopf bifurcation was destroyed: for all values of the bifurcation parameter the system has a 
unique global random attractor which gives a different perspective on the asymptotical 
behavior of the system. 

The work is in progress because analytical results must be obtained in order to explain the 
numerically observed features of the bifurcation behavior under the parametric white noise 
perturbation. 

 
5. Application of the decorrelation trajectory method to the turbulent transport. 
(Lect. Dr. Negrea Marian, Lect. Dr. Petrisor Iulian) 

 
We have calculated using the decorrelation trajectory method and the numerical simulations 
the diffusion coefficients for electrons. In order to do that, the Langevin stochastic equations, 
specific to the electrostatic turbulence combined with the stochastic sheared anisotropic 
magnetic field were studied for specific models. Conditions for the “strange” regimes 
(subdiffusion and superdiffusion) were also included and the trapping phenomena, which are 
responsible for the subdiffusion, were emphasized. The results concerning the diffusion 
coefficients obtained by the decorrelation trajectory method were compared with those 
corresponding to the numerical calculation [16, 17]. Typical trajectory obtained by numerical 
simulations is represented in Figure 1. 
 



 
Figure1. Typical trajectory 

 
We have also analyzed the test particle diffusion in an electromagnetic stochastic field and we 
have considered that both the electric and magnetic fields are stochastic with different 
correlation lengths and time [18]. We have considered in the model that the electrostatic 
potential and the magnetic potential are stochastic but stochastically uncorrelated. This kind 
of analysis is fundamental for gaining a proper understanding of many hot plasma 
experiments that operate naturally in such conditions or use external coils to generate 
electromagnetic stochasticity. Only the auto-correlations were taken into account for future 
studies. This statement was verified by using the TURBO code developed at Universite Libre 
de Bruxelles. We investigated (with TURBO) two-dimensional turbulence produced into a 
box of 512 x 512 modes by taking ab initio the kinematical viscosity equals to the magnetic 
diffusivity. We solved the full MHD equations by choosing some different type of forcing. 
The different but fixed energy and helicity injection rates in a shell of wave vectors were 
considered in order to evaluate the correlation tensors. We have concluded that for the electric 
and magnetic potentials the order of magnitude of the cross-correlations is much smaller than 
the auto-correlations. In Figure 2 the MSD in radial and poloidal directions were represented 
for a coupling parameter α= tA/tp =100, where tA is the Alfven time and tp (the proper time of 
the particle) is the inverse of the particle’s Larmor frequency. The trajectory is represented in 
Figure 3 for the same coupling parameter. The strange transport is obvious. Thus, this 
conclusion will be used as starting point for further studies like test particle movement in 
various combination of the stochastic fields. The other system of equations was prepared for 
the numerical study: the movement of the test particle in a stochastic electromagnetic field 
that is introduced in the problem as a solution of the magneto-hydrodynamics equations. A 
friction force, which is considered as a deterministic quantity and proportional with the 
relative velocity, will be added to the Lorentz force expression.  



 
Figure 2 - The poloidal (left) and radial (right) mean square displacements. 

 
 

 
Figure 3 - Trajectory of the test particle for α = 100 

 
 
 

We have used partly the computer facilities of ULB-VUB, Belgium, in collaboration with Dr. 
D. Carati, Dr. Bogdan Teaca and the research group from ULB, Belgium. 
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